Thus, maxima in the wall temperature and, accordingly, minima in the heat-transfer coefficient are ob-
served in several sections of the tube on the graphs of ty = f{x/d) (Fig. 1a, b}, The graphs of the dependence
tw = £(q) show that the maxima in wall temperature along the length correspond to sections CD (Fig, 2). It
follows from Fig. 1a, b that 2 maximum in the wall temperature is not observed in the readings of all the
thermocouples located at different distances along the length of the tube. But the graph of tyw = f(q) con-
structed for thermocouples located at different distances from the tube inlet (Fig. 4) shows that the sections
CD where ty grows with an increase in ¢ are obtained for all the thermocouples.

Consequently, it is probably more advisable to judge the mode of heat transfer not from the graph of
tw = £(x/d), but from the dependence ty = £(q).
NOTATION

tws t1, temperatures of wall and liquid, °C; t%n, liquid temperature at tube inlet, °C; p, pressure, bars;
tors cntlcal temperature, °C; pep, critical pressure, bars; q, heat flux density, W/ m?; pw, mass flow rate,
kg/ m? * sec; T, time, sec; tyy, pseudocritical temperature.
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SELECTION OF SIMILARITY CRITERIA IN
STUDYING THE EFFECT OF ROTATION ON
HEAT EXCHANGE IN TURBINE BLADES

V. A, Trushin ‘ UDC 536,244:621

The supplementary factors affecting the nature of the flow and heat exchange in rotating turbine
arrays and the supplementary criteria reflecting the effect of rotation on heat exchange in tur-
bine blades on the gas and air sides are discussed.

By now rather extensive experimental data have been accumulated on the intensity of heat exchange be-
tween a gas and rotating turbine blades [1-7}. In [1, 3] the experimental results are given without generaliza-
tion, but it clearly follows from them that rotation not only considerably intensifies but also causes a redis-
tribution of the heat-exchange coefficient over the contour of the profile in a rotor array. In [2] the experi-
ments are generalized for conditions of nonisothermal flow in the interblade channels, while in [4, 5] they are
generalized for cases which are close to isothermal. In [6, 7] the heat exchange was estimated by an indirect
method based on measurements of the blade temperatures with subsequent inverse calculation. The effect of
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rotation on heat exchange in rotor blades was not detected in [6, 7], nor was the effect of the angles of attack
on the heat-exchange intensity detected. On the one hand, the experimental results of [6, 7] indicate that the
method used by the authors does not conform in accuracy to the stated problem, while, on the other hand, as
was correctly remarked in [8], the identical values of the measured temperatures of blades being cooled in
a static state and in rotation can also be explained by the mutually compensating effect of the intensification

of heat exchange under the conditions of rotation both in the interblade channels and in the intrablade cooling
channels,

An analysis of [6, 7] shows that the authors incorrectly and incompletely analyzed the equation of mo-
tion

aa - —_ — R
? [EH’ (grad w)] =pT —grad p 4 py?w 1)

in application to a turbine stage, taklng as the similarity criteria the relationship to one another of the pro-
jections of one and the same vector T of forces of the same nature (mass forces), and they came to a doubt-
ful conclusion concerning the choice of the determining parameters which take into account the effect of rota-
tion on the heat exchange of rotor blades.

As is known [9], the nature and stability of motion in a boundary layer, and, consequently, the heat ex-
change, are determined by the relationship of the forces of different natures (inertial forces of motion,
mass forces, viscosity, pressure) acting on a stream element. In a turbine array under the conditions of
rotation supplementary forces appear in the stream, and it is just the relationship of these supplementary
forces to the forces of viscosity and inertia which determines the supplementary similarity criteria of the
processes of heat exchange of rotor blades [10].

The hydrodynamics and heat exchange on turbine blades are determined by a system of differential
equations which includes the equation of motion (1), the heat-exchange equation

Yo ko qor ) ®
AT ( on oo
the energy (heat-conduction) equation '
DT _ _h_ op, 3)
dt Cpf
and the continuity equation
op . .
—— -~ div (pw) =0. (4)
o (P

To make the heat-exchange phenomenon concrete the system of equations (1)-(4) is combined with uniqueness
conditions which characterize the geometry of the turbine stage, the physical properties of the gases, the
initial time conditions, and the boundary conditions (at the entrance and exit of the stage).

The supplementary forces and high-speed periodic unsteadiness of the stream which develop in the
transition from stationary to rotating turbine arrays are taken into account only by the equation of motion (1).
Therefore, it is sufficient to analyze only Eq. (1) to obtain the supplementary criteria reflecting the effect of
the supplementary factors on the heat exchange of rotor blades.

In developing the supplementary criteria under the conditions of rotation in [6, 7] the authors relate
the supplementary forces to the tangential force Ty acting on the array of blades, assuming it to be a mass
force. In reality, the force Tt is the inertial force of the change in momentum of the stream in the tangential
direction. The authors of {6, 7] relate the difference in centrifugal acceleration forces to the volume of gas
in the interblade channel (Fj ol) and the force Ty to the volume of the per-second flow rate of the gas
(Gv/z = watl). The requirement that all the forces be related to one and the same volume in the construction
and analysis of the equation of motion is thereby violated. There are also other incompatibilities with the re-
quirements of similarity theory in [6, 7].

The reduction of the equation of motion [1] to dimensionless form by the widely known method of scalar
transformations takes it into the form

lo ng - d; _jl ’f { a__ /_E_)_l,;_ [ [23]' (5)
[a;JnL[W(gra @) = -t 1T} — ( o] v

W,
W,T,y OWyly
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where the parameters with the subscript 0 are the reduction scales, while the parameters referred to them
are marked by an upper bar.

The complexes in front of the brackets in (5) reflect the ratios of the forces of various kinds acting on
a unit mass of gas to the inertial forces of the moving stream.

The complex o/wyT¢ = Sh, called the Strouhal number, reflects the effect on the flow and heat exchange
of the high-speed periodic unsteadiness of the gas stream from the encounter between the rotor blades and
the edge wakes of the guide blades; it is easily changed to the form

ua

Sh = 2L | (6)

Wyln

if as the characteristic time T, one takes the period in which a rotor blade travels the spacing between edge
wakes (T = tp/ugy) and if as the characteristic velocity one takes the relative velocity at the exit from the
rotor blades (wy = wy). As the characteristic dimension one can take the blade height (I, =1), and then t, =
tn/l.

The complex Tyly/wh = S reflects the effect of the mass forces on the flow and heat exchange in the
rotor array. As the scale T, one can take the total mass force vector

To=Te.ro + Tito -~ Teorro -+ Te.def -~ Ti.def -+ i:cor.de‘f . (7
Consequently, the complex S can be represented by six components. The first three
Tc.r;) ly :S; , Tcor.go Ly =W, Tl.rg L = AT,
Wy wy Wy

reflect the factor of rotation, while the other three
71 .defly Te.detly « Teor, deil ”
SO = AT, L = S, SSORLE0 g
w5 el g T w §
reflect the factor of deflection in the interblade channels,

The last two complexes S'g and Sé were discussed in [11] for the case of axial turbines.
Thus, the effect of rotation on the flow and heat exchange in rotor arrays is determined by the com-

plexes Shy, S{l, Wr.u, and Ty,

The complex

(ﬂ_ﬁ% ;
wa w:: Eﬂ’gﬁ'z
(where ¢ = d,,/!) corresponds to the criterion Sy = uzy/wyd obtained in[11]; we will also apply it to radial-
axial turbines.

In the complex
W,, = Jeanol 200l

Pl
ws Wy

the radial velocity wy for radial-axial turbines is made up of the radial component of the mean flow-rate
velocity wy flow. v, the radial velocity of secondary flows Wy gecs and the radial velocity from the counter-
rotation of the gas wy po in an interblade channel of a rotor array with an angular velocity —w.

If for the radial rotation velocity one takes w,. ;o = w(ty/2) and for the radial velocity from the secon-
dary flows [12] one takes

Wy goc =, (0.3 — 0.4) 2w, (0.25 — 0.35),

one obtains

200 90 (0.5 — 0.35) w,/ '
W, , = i 2 4 » (0.2 : 30) w, L 20w mgﬂow.rl=
Ws Wo Wa
4u2 4 ; )
- Tavi\nL 4 Al (0.25 — 0.35) féiwgﬂ,ﬂs‘.@l {9
Wiy d 5y Wyd sy widay
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The second term on the right side of Eq. (9) will equal zero for radial turbines, while the third term
will equal zero for axial turbines. The complex

Yoy
—2Y_BATY
AT, = Tixol _ ray — (10)
w3 . wg _
is changgd to the form (8 =1/T for anideal gas)
‘ 23 1| AT
AT, = — 2 - =
u ?”g 4, T (11)

and can also be used for radial-axial turbines.

It should be noted that for a compressible gas the Mach number M and the adiabatic index k, which
reflect the effect of compressibility on the heat exchange in turbine arrays, are obtained from the second
term on the right side of Eq. (5):

p kp a? 1

pw% = kpwg_ - kws - kM2 (12)

As is known, the complex u/ pw%lo = u/pwyal =1/Re] [see (5)] is the inverse Reynolds number.

'Thus, the ratio of the heat-exchange coefficient in a blade array on the gas side under conditions of ro-
tation to that for a stationary array will be determined by the quantity

S-g: *—Z‘gio— =f(Shu! Sl’h Wr,u, ATU)' (13)
g.st

For the cooling channels the equation of motion in dimensionless form is written similarly to (5) and
the intensification of heat exchange in the traunsition from stationary to rotating blades is determined by the
same criteria, but calculated with respect to scalar quantities referred to the cooling air (which is indicated
below by the subscript a).

We obtain )
Sh, 2= Unala _ Rty oy (14)

g, a=
Wydn.a Weal n.a

(ki = up_g/Ugy.a is determined from the geometry of the rotor).

The criterion which allows for the effect on the heat exchange of the nonuniformity of the centrifugal
forces over the volume of the channel in the isothermal stream takes the form

Moy ata (15)
. w:;a dgv
and is obviously applicable to channels of arbitrary configuration.

u.a

The complex reflecting the effect of Coriolis forces has the form

. 20w, 5! 4t ay 40p 0 | dhgtiyyl
Wena= réa av — an.a rata __ av'a (16)
Waa W2ad av.a Wealav.a
(kp = Wy a/W3ga is determined from the geometry of the rotor).
For radial channels, where Wy g = w3, this complex changes to the form (kp = 1)
Ayl
(Wr.u.a)rad—': —arA_, an

‘ Wyaday.a
A comparison of (16) and (17) with (15) shows that the criterion Wy y 5 reduces to the complex S:L as
namely,

Wi.u.a: 4kgs,u.a ' ) - (18)
i.e., the complex S{1 4 allows for the effect of both the centrifugal and Coriolis forces on the heat exchange in
the cooling channels.

The complex allowing for the effect on the heat exchange of the nonisothermal nature of the stream in
a cooling channel has the form
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TEBATLL, g AT 9

— lava _ av.da a (19}
AT, = ‘, =

2
wza wzadaTa

and is applicable both to axial and to radial turbines.

The intensification of heat exchange in the cooling channels in the transition from stationary to rotating
blades can be generalized in the form of the critical dependence

o
By = 210 = @ (Shy,a, uaoATu ae (20)
; Xa,st

One must also conclude that:

1. The laws of heat exchange in turbine rotor blades on the gas side require further refinement. It is
necessary to introduce the supplementary criteria Shy, Sl'1 a» Wy and ATy, reflecting the effect of high-
speed periodic unsteadiness and of centrifugal, Coriolis, and liting forces, respectively, on the nature of the
flow and heat exchange on rotating blades. It is necessary to refine the criterial equations for unsteady con-
ditions at increased Mach numbers.

2. Data on heat exchange in the cooling channels of rotor blades with air cooling are practically absent.
The data available in [6, 7] are obtained by indirect means, and besides, as indicated in [8], they must be ap-
plied with caution. Direct studies of this problem are urgently needed. The criterial equation for the calcula-
tion of the coefficients of heat exchange in rotating intrablade cooling channels should contain the criteria
Shy. a, Su a» and ATy, g which reflect the effect of high-speed periodic unsteadiness, centrifugal and Coriolis
forces, and lifting forces, respectively, on the hydrodynamics and heat exchange in them,

3. It should be noted that in this report it was not possible to allow for and find the criteria reflecting
the effect of the initial turbulence of the stream on the heat-exchange intensification € in the transition from
static to rotating arrays or on the turbulence intensification in this case.

4. Such an important factor as the site of the transition from a laminar to a turbulent boundary layer
along the profile of a rotor blade remains unaccounted for. The correct choice of the transition site provides
for better agreement between the calculated and experimental heat-exchange coefficients ag [14], but in the
Present report it did not seem possible to find the ecriterion reflecting the effect of rotation on the site of the
transition from a laminar to a turbulent boundary layer.

NOTATION

tp, Ugy, spacing of nozzle blades and circular velocity of rotor blades at mean diameter of turbine

rotor, respectively; Te, ro, T .TO» Tcor ro, vectors of centrifugal, lifting, and Coriolis forces due to rotation;

To.def Tl_def, Tcor‘def,, vectors of centrifugal, lifting, and Coriolis forces due to deflection of stream in an
interblade channel; Up, W, and rp, Ty, circular velocity and radius of periphery and base of blades; [, blade
length, day, average diameter of blading; ty, spacing of working array at average diameter; uy_a, circular
velocity of inlets of blade cooling channels having a supply of cooling air with preliminary swirling in a
special nozzle apparatus [13]; ty g, nozzle spacing of air nozzle apparatus; wy, relative stream velocity at
exit from rotor array; a, velocity of sound; k, adiabatic index; Og, ros Og,sts Xa,vos Ua.sts rotary and static
coefficients of heat exchange on gas and air sides; wy, axial component of relative velocity in rotor array;
z, number of rotor blades; Fj,c, frontal area of an interblade channel of rotor; G, v, flow rate of gas through
rotor array and its specific volume; n, direction of normal; T, P, g, i, temperature, pressure, density, and
viscosity, respectively; 7, A, coefficient of thermal conductivity; Cps heat capacity.
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ACOUSTIC DISPERSION IN RAREFIED GASES

V. A, Bubnov UDC 534-13:532.51
The problem of acoustic dispersion in rarefied gases is solved on the basis of the hydrodynam-
ical equations of Predvoditelev. The theoretical equation is compared with the experiments of

Greenspan for five monatomic gases. Theory and experiment are compared up to a Knudsen.
number of order unity.

1. On the Nonideal Continuity Parameter

In 1948 A, S, Predvoditelev described a technique for improving the Navier—=Stokes equations in appli-
cation to problems in which the hydrodynamic velocity gradient is related to the path traversed by the mole-
cules between collisions. This technique is based essentially on the Maxwell transport equation and a more
precise hypothesis regarding the relationship between the hydrodynamic flow velocity and the transport
velocities of two colliding molecules. The indicated relationship must be determined in transforming from
the Maxwell transport equation to the continuum equations.

If the most general assumptions are advanced with regard to the transport velocities of two colliding
molecules, the equations for the hydrodynamic stresses have the form [2]

0x; ox;,
i=1 2 3

£ . 1 5 0y dv; y—1 . \

i=p 4+ — (2, —v?)—2u | — —

Si=p+— A ez —o) u( o 5 de) l

— du. . l

P§i§i=_”( - + = )+(02i02i—vlivli); i=1,2 3, i (1.1)
}

When the transport velocities of the two colliding molecules are equal, i.e., when vgj = v = vj, Egs. (1.1)
go over to the expressions derived in the theory of the Navier—Stokes equations. Equations (1.1) can be used,
however, to obtain the more complete Predvoditelev equations in the form [2]
dv; A, 0 dp
—F . viv._—z}iu.]___.__
p Y }; 34, ™ [0 (02055 1:013) 3x

F) . i

. 9
+u[v2v,~ﬂ2—w :

i

divv ] : (1.2)

It is important to note that in the Maxwell calculations (2 — v) = 1/3, but this expression is valid only for a
monatomic gas. Consequently, this restriction of Maxwell is tacitly implicit in the adiabatic equation for a
monatomic gas. The latter fact was also first noted by Predvoditelev [1].
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